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Abstract Semantic analysis of handwritten document

images offers a wide range of practical application sce-

narios. A sequential combination of handwritten text

recognition (HTR) and a task-specific natural language

processing system offers an intuitive solution in this do-

main. However, this HTR-based approach suffers from

the problem of error propagation. An HTR-free model,

which avoids explicit text recognition and solves the

task end-to-end, tackles this problem, but often pro-

duces poor results. A possible reason for this is that it

does not incorporate largely pre-trained semantic word

embeddings, which turn out to be one of the most pow-

erful advantages in the textual domain. In this work,

we propose an HTR-based and an HTR-free model and

compare them on a variety of segmentation-based hand-

written document image benchmarks including seman-

tic word spotting, named entity recognition, and ques-

tion answering. Furthermore, we propose a cross-modal

knowledge distillation approach to integrate semantic

knowledge from textually pre-trained word embeddings

into HTR-free models. In a series of experiments, we

investigate optimization strategies for robust semantic

word image representation. We show that the incorpo-

ration of semantic knowledge is beneficial for HTR-free

approaches in achieving state-of-the-art results on a va-

riety of benchmarks.
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1 Introduction

Natural language processing (NLP) enables machines to

understand and process human language. Text analysis

is a major area of research in this field, where semantic

information is derived from purely textual input data.

In recent years, text analysis approaches have made sig-

nificant progress and are successfully deployed in a wide

range of real-world applications [3, 17,33].

Textual information is not necessarily encoded in a

machine-readable format, but can also be represented

as part of a handwritten document image. Semantic

analysis of this input format is an interesting and chal-

lenging area of research due to the combination of visual

and textual properties as well as the high variability

of handwriting. Handwritten text recognition (HTR)-
based approaches provide an intuitive realization in this

domain consisting of a sequential combination of an

HTR and a textual task-specific NLP system [10, 66].

In this process, the document image is first transformed

into a machine-readable format using an HTR model,

and then an NLP system is applied to the obtained text

to solve the given task. The HTR and NLP models are

trained independently, making it difficult or even im-

possible to correct recognition errors in the semantic

model [14,54].

To avoid the problem of error propagation, HTR-

free models are well established [1, 47, 62]. These ap-

proaches are based on end-to-end neural architectures

and avoid an explicit text recognition. The document

image is transformed into a feature representation and

a task-specific architecture is applied that uses vec-

torial rather than textual input to solve the seman-

tic task. Even though the error propagation problem

can be at least technically mitigated by HTR-free ap-

proaches, they have the fundamental disadvantage of
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not being able to exploit important advances in NLP,

such as pre-trained semantic word embeddings. Fur-

thermore, specialized architectures based on vector in-

stead of textual input are mandatory.

Both approaches have theoretical advantages and

disadvantages when it comes to semantic analysis of

handwritten document images. In this work, we present

and compare an HTR-based as well as an HTR-free ap-

proach. Hereby, we evaluate both approaches on a va-

riety of semantic handwritten document image bench-

marks, including semantic word spotting, named en-

tity recognition, and question answering. We identify

the lack of pre-trained semantic word embeddings as a

major problem of HTR-free approaches. Therefore, we

propose a cross-modal knowledge distillation approach

to efficiently transfer knowledge obtained in the textual

domain into the visual one, without incorporating text

recognition. A crucial issue in this integration process is

the mapping of handwritten word images into a textu-

ally pre-trained semantic word embedding space using

a convolutional neural network (CNN). We provide a

detailed discussion of the challenges of performing such

a mapping and present several approaches for optimiz-

ing it.

This work makes the following main contributions:

– We propose and compare an HTR-free and an HTR-

based framework for semantic analysis of handwrit-

ten document images.

– We explore and evaluate optimization strategies for

a robust semantic handwritten word image repre-

sentation.

– We present a novel cross-modal knowledge distilla-

tion approach for HTR-free integration of pre-trained

semantic knowledge from the textual to the visual

domain.

This work summarizes previously published meth-

ods and results from [64–67] and extends them with new

methods and further evaluations. In [65], we present

an architecture for mapping word images into a tex-

tually pre-trained semantic word embedding space. We

present an HTR-based approach for named entity recog-

nition in [66] and an HTR-free approach for question

answering in [67]. Recently, we published an evalua-

tion of textual semantic word embedding approaches

for a semantic representation of handwritten word im-

ages in [64].

2 Semantic Document Image Analysis

Semantic document image analysis is an interdisciplinary

research area of computer vision (CV) and NLP. There

are many relevant but specialized use cases in this area,

ranging from automated grading of exams [48, 52] to

understanding lecture notes [58]. In terms of real-world

and generic applications, this work focuses on the tasks

of semantic word spotting (see Section 2.1), named en-

tity recognition (see Section 2.2), and question answer-

ing (see Section 2.3).

2.1 Semantic Word Spotting

Semantic word spotting realizes a semantic word image

retrieval and can be seen as an extension of the tradi-

tional word spotting approach [70]. Given a query and

a collection of documents, the goal of this task is to

sort all word images from this collection according to

their semantic similarity to the query. This allows users

to search not only for word images with a particular

transcription, but also for concepts which are latent or

hidden inside a query [65]. There exists a variety of dif-

ferent query types with Query-by-Example (QbE) and

Query-by-String (QbS) being the most prominent ones.

In QbE applications, the query is a word image whereas

in QbS it is a textual string representation. Further-

more, word spotting approaches can be divided into

segmentation-free and segmentation-based [22]. In the

former case, the entire document image is used with-

out any segmentation at all, and in the latter case, an

external segmentation at word or line level is required.
An overview of semantic word spotting approaches from

the literature is given below. For a detailed survey on

traditional word spotting, see [22].

Early semantic word spotting approaches rely on

ontology-based knowledge [29] and are thus limited to

a small set of human labeled semantic relationships. To

overcome this limitation, approaches based on textu-

ally pre-trained semantic word embedding models from

the NLP domain have emerged [30, 65, 70]. These ap-

proaches rely on the common subspace representation

strategy [5] and learn a mapping of word images into

a textually pre-trained semantic space. Figure 1 illus-

trates this procedure. Given that the textual and vi-

sual data share a common representation, the similar-

ity between a query and a word image is determined

by their distance in embedding space. Early attempts

for realizing this idea use a two-stage CNN-based ap-

proach [65,70]. Thereby, the word images are converted

into a feature representation and afterwards mapped

into a semantic space using a fully connected neural
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Figure 1: Visualization of the common subspace representation approach. A mapping of word images into a tex-

tually pre-trained semantic word embedding space is learned using a convolutional neural network. The similarity

between two elements is determined by their distance (α) in this space.

network. The number of neurons in the last layer corre-

sponds to the size of the semantic word embedding to

be learned. End-to-end approaches are able to outper-

form two-stage architectures on semantic word image

mapping [30, 63]. Due to the weak correlation between

visual and semantic properties of words, the prediction

of semantic word representations is much more difficult

compared to classical word representations in the word

spotting domain (e.g. PHOC [5]) [65]. Recently, the re-

alization of a combined syntactic and semantic word

image representation has been investigated [30,63].

2.2 Named Entity Recognition

Named entity recognition (NER) is a sequence labeling

task with a long tradition in NLP [74]. The goal of this

task is to extract named entities (e.g. places, person,

organizations) from an unstructured text. In the fol-

lowing, we will provide an overview of NER approaches

on handwritten document images. A comprehensive re-

view of NER in the text domain is given in [74] and for

machine-printed document images in [15,19].

A sequential NER approach offers an intuitive so-

lution by first converting the given document into ma-

chine-readable text and then applying an NER model

to the extracted text [21,40]. However, these approaches

suffer from the error propagation problem [10, 18]. An

alternative to the sequential approach is the use of inte-

grated models that perform HTR and NER in a single

step [12,18,43,59]. These approaches can be divided into

segmentation-free [12, 46, 59] and segmentation-based

[13,43, 60]. Segmentation-free approaches are generally

based on an encoder-decoder architecture. Here, the

document image is first transformed into a two dimen-

sional feature map. Based on this representation, sep-

arate task-specific decoders for HTR and NER are ap-

plied and jointly optimized [12]. Combining transcripts

and named entity labels in a common output has proven

to be a powerful alternative to separate prediction [13,

46, 59]. In general, bidirectional long short-term mem-

ory (BLSTM) [18] or Transformer [59] models are used

for decoding and are trained on text recognition with

special characters for named entities. Segmentation ba-

sed approaches transform the given image of a text line

into a two-dimensional feature representation using a

CNN and encode the relationships between these fea-

tures using a BLSTM model [13, 60]. Similar to the

segmentation-free approaches, a nested prediction of

the transcription and entity data is generated.

HTR-free models offer a promising solution for NER

on handwritten document images. First approaches in

this area focus on detecting named entities with hand-

crafted features [1]. A detection and classification of

named entities based on word-level segmented docu-

ment images can be achieved by a CNN, where the last

layer corresponds to the number of entity classes [62].

This approach can be further improved by consider-
ing contextual information using an LSTM architec-

ture [2, 48, 62]. In this approach, a CNN is used to

extract features from the visual input and an LSTM

for modeling the interactions between these features.

Integrating additional information (e.g. part-of-speech

tags) [47] or using an attention mechanism [2] leads to

further improvements in this domain.

Recently, Transformer models for universal under-

standing of handwritten document images with self-

supervised pre-training and autoregressive output gen-

eration were proposed [16,27].

2.3 Question Answering

Search engines based on retrieval provide an efficient

way to find information in large collections of data. A

fundamental drawback of this approach is that users

have to filter the results manually to find the answer
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Figure 2: Overview of our proposed HTR-based framework for semantic analysis of handwritten document images.

Each pre-segmented word image from the document is separately transcribed by a handwritten text recognizer.

The resulting text is used as input to a task-specific NLP model, which fulfills the appropriate task.

to their query. To avoid this time-consuming and error-

prone process, users demand that modern search en-

gines provide a natural language answer to their query.

This challenging task is known as question answering

(QA) and has applications in a variety of disciplines

[37,72,77].

In general, a distinction is made between extractive

and generative QA models [8]. The extraction approach

is also referred to as machine reading comprehension

(MRC) and is based on the assumption that the cor-

rect answer to a question is available in the given con-

text. Traditional MRC approaches are mainly based on

handcrafted rules or statistical models [32,76]. The use

of neural approaches leads to major improvements over

classical methods [8]. The common workflow of these

neural approaches consists of an embedding, analysis,

and prediction phase [8]. In the embedding phase, the

context and question words are first transformed into

vector representations. The interaction between these

representations is modeled by a CNN, Transformer or

recurrent neural network architectures [8]. In the pre-

diction phase, a pseudo-probability distribution over

the context words is determined to find the start and

end positions of the answer. In addition to the classical

pipeline, end-to-end architectures have been proposed

in the literature [17, 33, 75]. These approaches encode

the question and context words with a common Trans-

former model. A multi-layer perceptron (MLP) is ap-

plied to the context word representations to determine

the start and end positions of the response [17]. Trans-

former models lead to state-of-the-art results on most

MRC benchmarks and can be further improved by ap-

propriate pre-training techniques [75].

There is an increasing interest in the QA task within

the document image analysis community [31,36,37,61].

The primary goal in this domain is to answer questions

based on knowledge embedded in a given collection of

document images. The multi-modal nature of document

images makes this task particularly challenging. In ad-

dition to textual data, these images also contain struc-

tural and visual features that provide information that

is relevant for answering questions. An important mile-

stone in this area is the publication of the DocVQA da-

taset [37] and the Document Visual Question Answer-

ing Challenge [38]. Multi-modal approaches outperform

sequential ones on nearly all QA benchmarks [6,69,73].

These approaches first extract visual, textual, and spa-

tial information from a document image and transform

them into feature representations. In most models, an

external OCR approach is used to extract the textual

and spatial information. The extraction of image fea-

tures is based on well-established models from the CV

domain, such as CNNs [6], U-nets [42], and region pro-

posal networks [73]. These features serve as input to

a Transformer encoder. This model is pre-trained on

several self-supervised tasks with the goal of combin-

ing and matching the multi-modal features. For QA,

an MLP is applied to the context word representations

from the encoder in order to determine the start and

end positions of the response [17].

Recently, Mathew et al. [36] published a first data-

set for QA on handwritten document collections. Fur-

thermore, they proposed an HTR-free QA approach,

which outperforms HTR-based QA models on a histor-

ical handwritten dataset [36].

3 HTR-based Framework

A sequential combination of an HTR and a task-specific

textual NLP model provides an intuitive solution for se-

mantic analysis of handwritten document images. This

method is referred to as HTR-based framework and

is illustrated in Figure 2. All pre-segmented word im-

ages from the input image are separately converted into

machine-readable text by an HTR model (see Section

3.1). The images are processed in the order they appear

in the document. The generated text is used as input

for an NLP model (see Section 3.2) to accomplish the

intended semantic task. The HTR and NLP models are

trained independently.
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3.1 Handwritten Text Recognition

In this work, we use the attention-based sequence-to-

sequence model proposed in [26] for HTR. This end-to-

end model is based on the encoder-decoder paradigm

and enables a transcription of handwritten word im-

ages. The encoder model extracts features from the

word image using a combination of a CNN and a bidi-

rectional gated recurrent unit (GRU). The decoder it-

eratively transcribes the given word image with an uni-

directional GRU model and an attention mechanism.

Specifically, the handwritten word image I is trans-

formed into a feature representation X ∈ R(N×C×D)

by a VGG network pre-trained on ImageNet [53]. For

sequential processing, X is reshaped into a two dimen-

sional matrix X ′ ∈ R(N×K). Motivated by the sequen-

tial nature of handwritten text, contextual represen-

tations H ∈ R(N×J) are computed from the columns

of X ′ using a two layer bidirectional GRU model. The

attention-based decoder uses the Bahdanau attention

[7] to generate a context vector ct =
∑N−1

i=0 αt,i ·hi ∈ RJ

at each decoding step t ∈ 0, . . . , T − 1. Here, hi ∈ H

is a contextual feature representation of an image re-

gion and αt ∈ RN is an attention vector. Based on

the context vector, the decoder computes a pseudo-

probability distribution with a unidirectional GRU mo-

del over the set of possible characters at each time step.

The final output sequence Y = (y0, . . . , yT−1) is gener-

ated by selecting the character with the highest pseudo-

probability at each time step. For a detailed overview

of this architecture, see [26].

3.2 HTR-based Semantic Models

A major advantage of the HTR-based approach is the

possibility to use NLP models without adapting their

architectures.

3.2.1 Semantic Word Spotting

We determine the semantic similarity between a query

A and a word image B by the distance between their

representations a ∈ RN and b ∈ RN in a textually pre-

trained word embedding space from the NLP domain

(e.g. FastText [9]). For this purpose, word images are

transcribed by the HTR model and transformed into a

vector representation using a semantic word embedding

model. The similarity is calculated using the following

formula:

dcos(A,B) =
a · b

∥a∥ · ∥b∥
(1)

A retrieval list is obtained by sorting all word images

from the database in descending order according to

their semantic similarity to the query.

3.2.2 Named Entity Recognition

The extracted machine-readable words from the docu-

ment image are transformed into context-sensitive vec-

tor representations by a pre-trained RoBERTa model

[33]. A two-layer BLSTM models the relationships be-

tween these representations. For each word image dk
a pseudo-probability distribution yk over the possible

entity classes C is generated. For this purpose, a com-

bination of an MLP and a softmax function is applied

to the outputs of the BLSTM. For word image dk, the

predicted entity class ŷk is the corresponding class with

the highest pseudo-probability in yk (see Equation 2).

ŷk = argmax
i∈1,...,C

yk,i (2)

3.2.3 Question Answering

For efficiency, our HTR-based QA approach uses a com-

bination of a retrieval and an answer extraction model.

The goal of retrieval is to reduce the given document

collection to a small number of documents that are rel-

evant for answering a given question. The relevance

of a document to the question is determined by the

Term Frequency - Inverse Document Frequency (TF-

IDF) score [34]. For the k most relevant documents,

the answers to the question are computed separately. A

QA architecture based on BERT [17] is used to extract

the answer. This model is pre-trained on language mod-
eling and is fine-tuned on the SQuAD dataset [44]. The

answer is extracted from the given document by com-

puting the start and end indices at token level, with

all tokens between these two values representing the

answer. In addition to the answer, a confidence score

is obtained. The final answer of the system is the text

passage of the k documents with the highest confidence.

4 HTR-free Framework

In this section, we present an HTR-free approach for se-

mantic analysis of handwritten document images. Fig-

ure 3 illustrates this end-to-end framework, which avoids

explicit text recognition and overcomes the problem of

error propagation. The first step of this approach is to

transform the pre-segmented word images from the in-

put image into vector representations using a word im-

age embedding model (see Section 4.1). The word im-

ages are processed independently in the order in which
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Figure 3: Overview of the proposed HTR-free approach for semantic analysis of handwritten document images. Each

pre-segmented word image from the input image is transformed into a vector representation using a convolutional

neural network. This sequence of representations is processed by a task-specific semantic HTR-free model.

they appear in the document. The obtained sequence

of word image representations is then used as input for

a task-specific semantic model (see Section 4.2) that

solves the desired task.

4.1 Word Image Embedding

All word images of a given document have to be trans-

formed into a vector representation of fixed dimension-

ality in order to be processed by a subsequent sequential

model. In this work, we use a modified ResNet34 archi-

tecture [24] for word image representation. The global

average pooling layer at the end of the network is re-

placed by a temporal pyramid pooling (TPP) layer [57].

The TPP layer produces a fixed-size representation ba-

sed on the feature maps extracted by the CNN, while

taking into account the sequential nature of handwrit-

ing. The final representation is obtained by applying a

fully connected network to the output of the TPP layer.

The dimensionality of the word image representation

is fully customizable by the user. When incorporating

knowledge from word representations, the dimensional-

ity is determined by the representation to be predicted

(e.g. FastText = 300).

4.2 HTR-free Semantic Models

Semantic analysis of document images without explicit

text recognition requires appropriate architectures ba-

sed on vectorial rather than textual input. The ap-

proaches presented in this work are mostly adapted

NLP architectures.

4.2.1 Semantic Word Spotting

HTR-free semantic word spotting is accomplished by

projecting word images and strings into a textually pre-

trained semantic word embedding space (see Figure 1).

For machine-readable queries, the mapping is straight-

forward, whereas for word images, a mapping into this

space must be realized. CNNs provide an excellent so-

lution in the context of traditional word spotting ap-

proaches [28, 56] and are adopted for this task. Specif-

ically, the CNN presented in Section 4.1 is used. The

model is trained in a supervised manner by learning

a mapping between word images and their associated

semantic embeddings. These embeddings are provided

based on the representations of their gold standard tex-

tual annotations in the pre-trained semantic space. Due

to the embedding of text and image in the same vec-

tor space, the similarity between a query and a word

image from the database can be determined by the dis-

tance of their representations in this space. In particu-

lar, the similarity score given in Equation 1 is used. A

retrieval list is obtained that ranks all word images in

the database by their similarity to the given query in

descending order.

4.2.2 Named Entity Recognition

Our proposed HTR-free NER architecture is quite sim-

ilar to the HTR-based one presented in Section 3.2.

These approaches differ only in the word image repre-

sentation part. The HTR-based model transcribes the

word images of the given document and converts them

into vector representations using a textual word embed-

ding model. In contrast, the HTR-free model uses the

CNN presented in Section 4.1 to convert each word im-

age directly into a vector representation without tran-

scribing it. End-to-end optimization is possible with

this architecture.

4.2.3 Question Answering

For efficient HTR-free QA on large document collec-

tions, we propose a combination of a document retrieval

and a QA model. The document retrieval model deter-

mines the relevance of each document in a given collec-

tion with respect to a given question. A comparison be-

tween the different modalities of word images and ques-

tion words is achieved by the common subspace repre-

sentation strategy. The relevance score doc score(D,Q)
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of a document D for the question Q is calculated as fol-

lows:

doc score(D,Q) =
1

|Q|
·
∑
q∈Q

max
w∈D

[dcos(w, q)] (3)

Thereby,w and q are vector representations of the word

images in D and the question words in Q, respectively.

For each question word, the maximum similarity with

respect to all word images from the document is com-

puted. The final similarity score is the sum of these

scores divided by the number of words in the question.

The k documents with the highest scores in the col-

lection are processed individually by an answer extrac-

tion model. Our proposed QA approach is an adapted

variant of the textual BIDAF architecture [50]. The

textual inputs are replaced by vector representations

of the input word images and the output format is

changed from word to line level. Similar to the retrieval

model, word images and question words are projected

into a common subspace. Two separate BLSTMs are

used to extract and model the relationships between

the document and the question representations individ-

ually. Next, an attention-based representation is deter-

mined between the context and question word represen-

tations. The obtained representations are concatenated

and serve as input to another two-layered BLSTM ar-

chitecture that models the relationship between ques-

tion and context words. In order to obtain the start

and end rows of the answer, the BLSTM outputs are

reduced to the number of lines in the document by sum-

ming the word representations according to their line

membership in the document. A fully connected layer

is applied to each of these line representations, which
computes the start and end line indices. A confidence

score of the prediction is obtained by the sum of the

activations for the predicted start and end line indices.

The final answer of the QA system is the prediction

with maximum confidence. For a detailed overview of

this architecture, see [67].

5 Cross-modal Knowledge Distillation

Powerful semantic word embedding models are avail-

able in the textual domain. However, such models are

lacking for handwritten word images. The aim of this

work is to transfer knowledge gained in the textual do-

main to handwritten word images without doing an ex-

plicit text recognition. Due to the HTR-free require-

ment, it is necessary to transfer knowledge across modal-

ities. This process is known in the literature as cross-

modal knowledge distillation [23] and is illustrated in

Figure 4. In general, a teacher model is pre-trained on

Teacher

...

Student

Synthetic Image
Generator

"brain" ...
Pre-trained

Word Embedding Model
(e.g. BERT)

Distillation
Loss

Figure 4: Overview of our knowledge distillation ap-

proach. Semantic knowledge is encoded by a textually

pre-trained word embedding model. A semantic word

image representation is learned by predicting a repre-

sentation similar to the embedding of its annotation,

which is obtained from the word embedding model.

The distillation loss is a similarity measure of the rep-

resentations obtained by the teacher and the student.

The synthetic word image generator is only used in the

annotation-free approach.

one input modality and its knowledge is transferred to

a student model that uses a different modality. In our

case, a pre-trained word embedding model from the

NLP domain serves as the teacher and the CNN model

proposed in Section 4.1 as the student. The input of

the teacher is a machine-readable word and the input

of the student is a handwritten word image. The stu-

dent model is trained in a supervised manner to predict

a semantic representation for a given word image that

is similar to the one predicted by the teacher model

using the textual annotation of that word image. This
is achieved by using a loss function, called the distil-

lation loss, which captures the difference between the

prediction of the student model (ŷ) and the teacher

model (y). The mean squared error (see Equation 4) is

used as the loss function in this work. By minimizing

this loss, the student model becomes better at making

the same predictions as the teacher. During training,

the gold-standard textual annotations of handwritten

word images are available and used to create gold stan-

dard semantic word image representations based on the

teacher model.

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 (4)

A crucial factor of this distillation approach is the

choice of an appropriate textual semantic word embed-

ding model. Therefore, we experiment with promising

word embedding models from the NLP domain in Sec-

tion 5.1. We will show that this distillation approach
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has limitations for word images whose transcriptions

did not occur in training. To address this issue, we

present in Section 5.2 an annotation-free distillation

strategy that uses synthetically generated word images

to minimize the amount of out-of-training words. In

addition, three strategies for integrating the semantic

word image embedding model into the proposed HTR-

free framework are presented in Section 5.3.

5.1 Semantic Word Embeddings

Semantic word embedding approaches use quite differ-

ent approaches to encode semantic information. These

methods can generally be divided into static and context-

based [51]. A major limitation of static embeddings is

that they are context-independent and thus ignore word

polysemy. Context-based embeddings outperform static

ones on almost all NLP benchmarks [20]. However, due

to the independent representation of word images in our

HTR-free approach, only static embeddings are suit-

able.

Word2Vec [39] is one of the first approaches for

semantic word embedding. It uses a neural network

to learn semantic representations for a given vocabu-

lary based on the distribution hypothesis. The embed-

dings are generated independently of the word struc-

ture, making it impossible to predict embeddings for

words that were not part of the vocabulary. To over-

come this limitation, subword approaches such as Fast-

Text [9] and BytePair [25] have been proposed. These

models split words into subwords and combine their

embeddings into a single representation.

Context-based methods are used to encode word or-

der information and tackle the problem of word poly-

semy. Even though context-based approaches are not

directly suitable for our framework, static representa-

tions can be extracted that are able to outperform tra-

ditional static approaches on a variety of semantic bench-

marks [20]. First context-sensitive models such as ELMO

[41] and Flair [4] use LSTM architectures. A funda-

mental difference between these two approaches is that

Flair processes the textual input purely character-based

while ELMO uses a mixture of character and static

word embeddings. Transformer-based encoders such as

BERT [17] are trained on large text corpora in a semi-

supervised manner. These encoders use a fixed size vo-

cabulary and a tokenization approach to represent the

input text. Furthermore, a positional embedding is used

for word order encoding.

5.2 Annotation-free Knowledge Distillation

Knowledge distillation requires a sufficient amount of

annotated training data [49]. This is particularly ev-

ident for our approach due to the lack of correspon-

dence between semantic information and visual appear-

ance of words. This missing link makes it generally im-

possible to predict the semantic information of an un-

known word from its characters and their order. As a

result, predicting semantic representations for word im-

ages whose annotations did not appear in the training

set is difficult or even impossible [65]. Therefore, it is

important to include as many words as possible in the

training.

Unfortunately, the availability of large datasets with

manually annotated word images are a major prob-

lem in the domain of handwritten document images.

To address this problem, we propose an annotation-

free knowledge distillation approach (see Figure 4) that

relies on synthetically generated handwritten word im-

ages. This allows for efficient generation of large amounts

of automatically labeled handwriting word images, and

thus reduces the number of out-of-training words. The

underlying assumption is that a sufficiently large set

of synthesized word images can adequately cover the

semantic space. Thus, only a few word image repre-

sentations will be incorrectly predicted, which can be

handled internally by an HTR-free model. Hereby, syn-

thetic word images have already been successfully used

in the handwriting domain to reduce or even eliminate

the need for manually annotated data in various tasks

(cf. e.g. [71]).

The main difference between the annotation-free ap-

proach and the traditional approach is at the input

stage. The remaining workflow is identical to the tradi-

tional approach. Hereby, the annotation-free model re-

quires just a machine-readable word as input, whereas

the traditional model assumes a manually labeled word

image. For the input word, a handwritten word image

is synthesized using publicly available True Type fonts

that resemble handwriting. Distortions and artifacts are

randomly applied to the word image in order to gener-

ate realistic conditions. A vocabulary of input words is

required. We use the most common English words as

these are most likely to appear in future documents.

5.3 Integration Strategies

We investigate strategies for integrating distilled knowl-

edge into our HTR-free approach. In the NLP domain,

feature-based and fine-tuning approaches are well es-

tablished for transfer learning [17]. The feature-based

approach uses a pre-trained word embedding model to
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Figure 5: Overview of the multi-objective integration strategy. Besides training on the downstream task, the HTR-

free approach is trained on knowledge distillation for the given handwritten word images. The NLP and distillation

losses are jointly optimized.

transform input words into vector representations. These

embeddings are used as input to a task-specific architec-

ture. Thus, the word embedding model is not adapted

during the training of the downstream task. In contrast,

the fine-tuning approach adds a task-specific head to a

given word embedding model and fine-tunes the entire

model on the downstream task. In this way, the word

embeddings can be adapted to the NLP task. For most

NLP benchmarks, the fine-tuning approach can outper-

form the feature-based approach, but has substantial

resource requirements [17].

We propose a feature-based and a fine-tuning ap-

proach for HTR-free semantic knowledge integration.

By default, the weights of the HTR-free framework are

randomly set. All proposed approaches initialize the

word image embedding model with the weights of the

distilled model. In the feature-based approach, the pa-
rameter of the embedding model are not adaptable dur-

ing training. Thus, only the weights of the task-specific

NLPmodel remain adjustable, and the pre-trained word

image representations serve only as input. The fine-tun-

ing approach is an end-to-end model, where the weights

of the embedding model and the NLP model are tune-

able. In both the feature-based and fine-tuning frame-

works, the model is trained on the semantic downstream

task in a fully supervised manner.

Due to the combination of a generally small number

of annotated training examples for the downstream task

and the large number of model parameters, overfitting

to the training data can quickly occur. To alleviate this

problem, we propose a multi-objective approach that

extends the fine-tuning approach by optimizing the dis-

tillation loss in addition to the loss function for the NLP

task. These two criteria are optimized by minimizing

the sum of their losses. The multi-objective approach is

illustrated in Figure 5.

6 Experiments

6.1 Datasets

We train and evaluate our proposed approaches on both

synthetically generated as well as real handwritten word

images from modern and historical documents. The da-

tasets differ considerably in the size of the available

training and test material, as well as in the number of

writers. This allows to draw conclusion for a variety of

real-world application scenarios. Bounding box infor-

mation at word level is available for all datasets. In ad-

dition to their NER or QA specialization, the datasets

are evaluated for HTR and semantic word spotting.

6.1.1 IAM Database

The IAM Database (IAM-DB) [35] is a major bench-

mark for HTR and word spotting. The documents con-

tain modern English sentences and were written by a to-

tal of 657 different people. The database consists of 1539

scanned text pages containing a total of 13353 text lines

and 115320 words. The official partitioning is writer-

independent, such that each writer contributed to either

the training, validation or test set. Manual named en-

tity annotations and an optimized semantic partition-

ing are available [66]. These annotations are based on

the established 18 categories from the OntoNotes Re-

lease 5.0 dataset. Two versions with 18 and 6 categories

are provided. In the reduced version, the 18 labels have

been summarized and severely underrepresented cate-

gories have been excluded.

6.1.2 Synth12K

The Synth12K dataset consists of synthetically ren-

dered word images from True Type fonts that resemble
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handwriting. This dataset is generated from a lexicon

containing the 12000 most common English words. For

each word, 50 training and 4 test images are generated.

The training and test data use different fonts and are

thus writer-independent. The font is randomly selected

from over 300 publicly available fonts. Each word of the

document is rendered onto a gray background. The font

size and stroke intensity are randomly set.

6.1.3 HW-SQuAD

HW-SQuAD [36] is a QA dataset consisting of syntacti-

cally generated handwritten document images based on

the textual SQuAD1.0 [44] dataset. The synthetic data-

set consists of 20963 document pages containing a total

of 84942 questions. The official partitioning splits the

dataset into 17007 documents for training, 1889 for val-

idation and 2067 for testing. The training, validation,

and test sets contain 67887, 7578, and 9477 questions,

respectively.

6.1.4 BenthamQA

BenthamQA [36] is a small historical handwritten QA

dataset where questions and answers were created using

crowdsourcing. The historic dataset contains 338 docu-

ments written by the English philosopher Jeremy Ben-

tham and shows some considerable variations in writing

styles. The dataset provides only a test set consisting

of 200 question-answer pairs on 94 document images.

The remaining 244 documents from the collection are

used as distractors.

6.1.5 Synthetic Groningen Meaning Bank

The synthetic Groningen Meaning Bank (sGMB) da-

taset [12] consists of synthetically generated handwrit-

ten document pages obtained from the corpus of the

Groningen Meaning Bank [11]. It contains unstructured

English text mainly from a newspaper, whereby the

words have been labeled with the following categories:

Geographical Entity, Organization, Person, Geopoliti-

cal Entity and Time indicator. There is an official split

containing 38048 training, 5150 validation and 18183

test word images.

6.1.6 George Washington

The George Washington (GW) dataset [45] has become

the de-facto standard benchmark for word spotting. It

consists of 20 pages of correspondences between George

Washington and his associates dating from 1755. The

documents were written by a single person in historical

English. Manual named entity annotations are available

as well as an optimized partitioning of the document

images for semantic tasks [66]. The word images are

manually labeled with the following categories: Cardi-

nal, Date, Location, Organization and Person.

6.2 Evaluation Protocols

6.2.1 Semantic Word Spotting

Evaluation of semantic word spotting approaches re-

quires both a semantic and a retrieval performance met-

ric. Hereby, mean Average Precision (mAP) has been

established as the de-facto standard metric for evalu-

ating word spotting approaches. Specifically, the estab-

lished protocol proposed in [5] is used. In the QbE set-

ting, the first retrieved image is not included in the

mAP calculation. For IAM-DB, only queries that are

not part of the official stop word list are considered,

but are kept as distractors during retrieval.

For evaluating the semantic quality of textual word

embedding models, word analogy (WA) benchmarks

have emerged. Here, manually predefined examples of

semantic analogies are given which the model has to

resolve. Formally, three words a, b, and c are provided

in the WA task. The goal is to determine the fourth

word d such that the following condition is satisfied:

a is to b as c is to d. We follow the evaluation of [30]

and use a collection of manually defined WA examples

published in [39]. To adapt this metric to handwritten

word images, we first compute embeddings for all word

images in a given test set. For a given analogy, the tex-

tual semantic representations of words a, b, and c are

determined. Then, the expected position d̂ of the target

word is computed:

d̂ = b− a+ c (5)

Based on this, the word image with the highest cosine

similarity to d̂ is determined. If the annotation of this

word image matches the target word d, then the anal-

ogy is fulfilled. The percentage of correctly predicted

analogies is used as the final measure of semantic eval-

uation. An analogy is discarded if the target word d

does not have at least one word image with the same

annotation in the test set.

6.2.2 Named Entity Recognition

The F1 score is the standard measure for evaluating

NER models [74]. This score can be interpreted as a

weighted average of precision and recall and is formally

defined as shown in Equation 6. There are several defini-

tions of this metric, with macro and micro F1 being the
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most popular. In our experiments, we use the macro F1

score. This metric is computed independently for each

entity class and finally averaged using the harmonic

mean. Thus, all entity classes are considered equally,

preventing the score from being dominated by a major-

ity class.

F1 = 2 · precision · recall
precision+ recall

(6)

6.2.3 Question Answering

The double inclusion score (DIS) [36] is an established

metric for HTR-free QA systems. Inspired by the Inter-

section over Union (IoU) measure, this score determines

the alignment of image regions from the predicted and

gold standard answers. A formal definition of this met-

ric is given in Equation 7. The small box (SB) contains

all word images that are part of the gold standard an-

swer. The large box (LB) contains all the word images

from the lines that are part of the SB, as well as those

from the lines above and below. The answer box (AB)

contains the word images included in the image region

predicted by a QA system. A prediction is considered

correct if the DIS is greater than 0.8.

DIS =
|AB ∩ SB|

|SB|
· |AB ∩ LB|

|AB|
(7)

6.3 Implementation Details

We do not make any changes to the hyperparameter

and optimization strategy proposed in [26] for the HTR

model. We only adjust the size of the input images,

the maximum word length, and the alphabet for each

dataset.

The word image embedding network is optimized

with the mean squared error loss and the ADAM op-

timizer using a batch size of 64. The network is first

pre-trained on the Synth12k dataset. A learning rate of

0.01 is used during pre-training and 0.001 during fine

tuning. The images are scaled and padded to a fixed size

of 128×384, while preserving the aspect ratio. Semantic

representations are normalized to zero mean and unit

variance.

In the proposed NER architecture, the BLSTM mo-

del uses a hidden layer size of 256 and a dropout of

0.5. For optimization, we use cross-entropy loss and

the ADAM optimizer. The learning rate is initially set

to 0.001 and is divided by two whenever the training

loss does not decrease in a certain range within 10

epochs. We follow the label smoothing approach pro-

posed by [62].
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Figure 6: Impact of handwriting recognition errors on

the performance of NLP approaches. The metric of each

benchmark is given in brackets. The QA results are

obtained on BenthamQA, the NER results on IAM-

NER (6), and the WA on IAM-DB.

The BIDAF architecture is trained on HWSQuAD.

We do not change the suggested parameters provided

by [50]. The BLSTMs use a hidden layer size of 100

and a dropout probability of 0.2. ADADELTA is used

to optimize the cross entropy-loss model with a learning

rate of 0.5.

6.4 Effect of HTR Errors on NLP Models

In a first experiment, we investigate the impact of HTR

errors on the performance of our proposed HTR-based

framework. To achieve variable recognition rates, a va-

riety of HTR models are trained with different percent-

ages of training data ranging from 1% to 100%. These

models are used to transcribe the word images from

the test sets of the NLP benchmarks. The transcribed

texts are subsequently used as input to a task-specific

NLP model proposed in Section 3.2. The performance

of these NLP models is further evaluated using perfect

recognition results. Hereby, the annotations of word im-

ages are used as input to the NLP models.

Figure 6 illustrates the strong negative impact of

HTR errors on state-of-the-art NLP approaches. With

perfect recognition, high performances can be achieved

on these benchmarks. However, the results for NER and

word spotting degrade considerably even with a small

number of text recognition errors (5% CER). There is a

performance loss of about 15% on the NER benchmark

and a loss of about 20% for semantic word spotting.

In conclusion, the results indicate a strong negative in-
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Table 1: Comparison of word embedding methods for

named entity recognition on a variety of benchmarks.

Results are reported in macro F1.

Embedding IAM
(6)

IAM
(18)

GW sGMB

Random 54.8 24.1 60.9 69.3
Syntactic 67.7 46.8 73.6 75.1
Semantic 87.5 63.5 89.6 80.2

fluence of HTR errors on the performance of textual

semantic approaches.

6.5 Impact of Pre-trained Semantic Word Embeddings

on Semantic Tasks

We consider the lack of pre-trained semantic knowl-

edge to be a major limitation of HTR-free approaches.

To test our assumption, we determine the relevance of

pre-trained semantic word embeddings for NER. For

this purpose, we replace the semantic word embedding

used in our proposed NER model (see Section 3.2) with

a randomly initialized word embedding and compare

their performance on a variety of NER benchmarks. We

evaluate the model under perfect text recognition by us-

ing the gold standard text annotations of the document

image as input to the NER system. The randomly ini-

tialized word embedding method follows the idea pro-

posed in [3]. Characters are converted into a randomly

initialized but adaptable embedding of size 256. Words

are formed by splitting the input string based on spaces.

A BLSTM encodes a single word representation for each

sequence of character representations. The final word

embedding is obtained by concatenating the first hid-

den state of the backward model and the last hidden

state of the forward model. We additionally evaluate a

syntactic word embedding approach. Hereby, the pyra-

midal histogram of characters (PHOC) encoding [5] is

used. This representation method encodes words with a

small edit distance into a similar embedding, providing

a kind of word recognition. For semantic word repre-

sentation, we stick to the RoBERTa model.

Table 1 reveals large differences between the embed-

ding methods used. Randomly initialized word embed-

dings can already correctly classify many named en-

tities. Using syntactic word embeddings improves the

performance considerably. This is probably due to the

small amount of training data, where the given word

structure increases the generalization ability and coun-

teracts overfitting. Pre-trained semantic word embed-

dings are shown to be fundamental and lead to large

performance improvements.
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Figure 7: Performance of each layer from the BERT

and ELMo models with respect to static word repre-

sentation. The quality is determined based on a word

analogy benchmark on the IAM-DB.

6.6 Knowledge Distillation

We evaluate our knowledge distillation approach for se-

mantic word image representation. We first explore tex-

tually pre-trained word embedding models for acting

as a teacher model. Then, we attempt to improve the

robustness of distillation by using our annotation-free

distillation approach. Finally, we evaluate our proposed

integration strategies for using the distilled knowledge

in our HTR-free framework.

6.6.1 Semantic Word Embeddings

Transforming machine-readable words into static vec-

tor representations is well defined for most approaches.

However, there are several ways to extract static word

representations from BERT and ELMo models. In or-

der to select an appropriate static word representation,

Figure 7 visualizes the semantic quality of each layer

in the respective models. The WA score on the IAM

benchmark is used as semantic quality measure. For

the BERT model, the performances of the individual

layer vary considerably, with the first layers of the mo-

del realizing a powerful static word representation. In

contrast, the last layers show low performance on the

static benchmark and seem to encode mainly contex-

tual information. The ELMo model has only three out-

put layers, whose results on the benchmark vary only

slightly.

Figure 8 (a) illustrates WA scores on the gold stan-

dard text annotations of IAM-DB for a variety of word

representation methods. The results highlight the ad-

vantages of semantic over syntactic word representa-

tions in encoding semantic knowledge. Semantic em-

beddings are able to resolve more than 90% of the
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Figure 9: Quality of predicting semantic word image representations based on their occurrence in the training set.
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given word analogies, while syntactic embeddings are

able to resolve only about 25% of these analogies cor-

rectly. Static embeddings extracted from the context-

based BERT and ELMo approaches considerably im-

prove the results compared to classical methods such

as FastText and Word2Vec. The purely character-based

Flair embedding leads to a comparatively low perfor-

mance.

Besides the semantic quality of word embeddings,

their prediction based on word images is relevant for our

approach. In general, the experimental results in Fig-

ure 8 (b) show that the choice of an appropriate textual

word embedding method has a fundamental impact on

the quality of semantic word image representation. Al-

though there is little variation between the embedding

methods in terms of QbE values, the advantages and

disadvantages of these methods are evident in terms of

QbS and WA scores. The syntactic PHOC representa-

tion can be predicted well based on word images, but

encodes little to no semantic information. Although a

purely character-based Flair embedding improves the

semantic quality, it also leads to a reduced performance

in terms of prediction. As expected, Word2Vec achieves

the lowest performance in the QbS benchmark due to

the missing link between word shape and representa-

tion. FastText can improve performance over Word2Vec

by taking n-gram information into account. BERT and

ELMo models provide the best trade-off between se-

mantic quality and prediction based on word images.

Even though the BERT embedding shows only minor

differences compared to the ELMo representation on

IAM-DB, ELMo provides the best ratio between WA

and QbS scores on all benchmarks tested. Therefore,

the ELMo embedding is used as semantic word image

representation method in the remaining experiments.

6.6.2 Annotation-free Knowledge Distillation

The quality of predicting semantic word image repre-

sentations lags far behind syntactic ones. We analyze

the semantic prediction in Figure 9 (a). The results il-

lustrate that the quality of predicting a semantic word

image embedding strongly depends on whether the an-

notation of a given word image was part of the training

or not. First, we evaluate the coverage of test words in

IAM-DB. Using only the training data, 54.7% of the
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Figure 10: Influence of synthesized word images on pre-

dicting ELMo representations. The performance of the

predictions is evaluated using WA and QbS bench-

marks. A value of 0 on the x-axis represents the set

of words from the training data, and any value x > 0

represents the inclusion of the x · 1000 most frequent

English words.

test words appear in the training set. By including syn-

thetic word images of the most frequently used English

words, the coverage of the test words can be increased

to more than 90%. Around 80% of test words is already

covered by including 10.000 words.

Figure 10 highlights the positive influence of in-

tegrating synthetically generated word images during

training. There is a high correlation between the cover-

age of the test words and the prediction performance of

the semantic embeddings. The largest performance in-

crease is obtained when the 10.000 most frequent words

are used. Unfortunately, the performance does not im-

prove considerably with an increasing number of syn-

thesized words. The improvements on the QbS and WA

benchmarks can be attributed to the enhanced predic-

tion of words that did not occur in training. This is

shown in Figure 9 (b).

6.6.3 Evaluation of Integration Strategies

In order to integrate the distilled semantic knowledge

into the HTR-free framework, we evaluate and compare

the methods presented in Section 5.3. Figure 11 shows

results for the three integration strategies on a variety

of NER and QA benchmarks. Additionally, where pos-

sible, a random initialization of the word embedding

model is evaluated as a baseline approach.

Compared to random initialization, the three pre-

sented integration approaches lead to considerably im-

proved results on NER benchmarks. Performances of

the randomly initialized models differ across the bench-

marks. For the three integration approaches, the results

are almost identical, with the multi-objective approach

performing best and the fine-tuning method worst.

Due to the machine-readable format of the question,

a QA model with randomly initialized word embeddings

is not appropriate. For both evaluated QA benchmarks,

Table 2: Performance of our HTR models on the eval-

uation benchmark datasets. Results are given in CER

and WER.

Dataset CER WER

IAM (WS) 5.5 14.3
IAM (SEM) 7.0 19.9
GW 3.1 8.0
sGMB 2.7 9.1
BenthamQA 19.1 43.8
HWSQuAD 0.5 1.7

the fine-tuning approach achieves considerably worse

results than the feature-based approach. This is proba-

bly due to the more complex architecture and problem

definition with respect to NER. Given the combination

of complexity and huge amount of adjustable parame-

ters of the model, overfitting to the training data could

be the reason for poor generalization. In addition, the

multi-objective method is not suitable for BenthamQA.

This is explained by the unrepresentative nature of the

synthetically generated word images between training

dataset to the historical word images from the test set.

This causes a considerable degradation in the predic-

tion of semantic word representations on the test data.

Overall, the multi-objective approach provides the

best results for all evaluated NER benchmarks, while

the feature-based approach yields the best results for

the QA benchmarks. Considering the only slightly worse

scores for the feature-based approach on the NER bench-

marks and the considerably lower resource requirements

for training compared to the end-to-end approaches, we

recommend the use of the feature-based approach in

practice.

6.7 Task-specific Evaluation

After setting the appropriate hyperparameters for our

HTR-free approach, we evaluate our proposed frame-

works and compare them with approaches from the lit-

erature on a variety of benchmarks. These benchmarks

include semantic word spotting, named entity recog-

nition, and question answering. Hereby, our HTR-free

approach uses ELMo as semantic word image repre-

sentation, annotation-free knowledge distillation as pre-

training and the feature-based integration strategy. Ta-

ble 2 shows the text recognition performance of the

HTR models on the benchmark datasets.

6.7.1 Semantic Word Spotting

There are currently only a few publications in the liter-

ature related to semantic word spotting. These methods
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Figure 11: Performance of the proposed integration strategies on a variety of named entity recognition and question

answering benchmarks.

Table 3: Comparison of our proposed HTR-free and

HTR-based approaches on QbE and QbS semantic word

spotting. Results are given in mAP. Furthermore, the

semantic quality is evaluated by a WA task.

GW IAM-DB

Approach QbE QbS WA QbE QbS WA

PHOCResNet [55] 97.8 98.0 — 85.5 94.1 —
HWNetv3 [28] 99.5 99.8 — 93.2 97.5 —

Triplet-CNN [70] 96.9 69.8 — 81.6 75.7 —
Sem-MSE [30] 97.6 94.4 — 84.6 69.7 63.2
Sem-Rank [30] 97.8 93.7 — 83.3 71.3 65.6
Combined [30] 99.4 98.8 — 90.6 94.3 61.5
HTR-based 97.0 96.6 100.0 77.3 84.0 73.7
HTR-free 98.1 98.9 100.0 85.7 86.2 89.1

Table 4: Additional semantic word spotting evaluation

on the HWSQUAD, BenthamQA and sGMB datasets.

QbE and QbS results are reported in mAP and WA in

accuracy.

HTR-free HTR-based

Dataset QbE QbS WA QbE QbS WA

HWSQuAD 99.5 96.9 84.2 98.9 98.9 83.8
BenthamQA 72.8 74.6 49.7 49.1 56.5 35.1
sGMB 94.2 91.5 82.3 89.1 91.3 84.3

have only been evaluated for IAM-DB and GW. Table

3 provides results obtained by state-of-the-art seman-

tic and syntactic word spotting models, as well as our

proposed HTR-free and HTR-based approaches. Espe-

cially on IAM-DB, the difference between the HTR-free

and the HTR-based model becomes evident. The per-

formance of the HTR-based approach for QbE retrieval

and WA task decreases. Compared to approaches in

the literature, our proposed HTR-free method can con-

siderably improve the WA performance, especially on

IAM-DB. Even though a combination of semantic and

Table 5: Comparison of our proposed frameworks with

NER approaches from the literature on several NER

benchmarks. Results are given in macro-F1. In addi-

tion, a baseline of the HTR-based approach working on

gold standard text annotations of the input word im-

ages is evaluated.

Approach IAM
(6)

IAM
(18)

GW sGMB

Toledo et al. [62] 37.4 18.0 45.3 38.8
Carbonell et al. [12] — — — 53.5
Rowtula et al. [47] 54.6 30.3 66.6 60.1
Dessurt [16] 71.1 48.5 — —
Line-level CN [68] 57.2 46.5 68.8 —
HTR-based 76.4 53.6 81.3 75.8
HTR-free 74.6 51.0 83.8 76.9

HTR-based (Ann.) 87.5 63.5 89.6 80.2

syntactic representations as proposed in [30] leads to

better QbS results, the approach shows lower semantic

quality and generally provides a worse trade-off between

QbS and WA metrics.

We further evaluate our approaches on sGMB, HW-

SQuAD and BenthamQA in Table 4. For HWSQuAD

and sGMB, there is no clear advantage for any of our

proposed approaches. This is probably due to the low

CER scores on both datasets. However, on the chal-

lenging BenthamQA dataset, the HTR-free approach

provides considerable performance improvements on all

metrics. This is due to the large number of text recog-

nition errors produced by the HTR model, resulting in

many incorrectly predicted semantic word embeddings.

6.7.2 Named Entity Recognition

Table 5 compares our proposed approaches to meth-

ods from the literature on a variety of NER bechmarks.

A comparison of our HTR-free and HTR-based frame-

work reveals that both approaches achieve similiar re-

sults on all benchmarks. The HTR-based approach per-
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Table 6: QA results obtained on HWSQuAD and Ben-

thamQA datasets. Results are given independently for

retrieval (R), answer extraction (E), and the entire

pipeline (C). In addition, a baseline of the HTR-based

approach working on gold standard text annotations of

the input word images is evaluated.

HWSQuAD BenthamQA

Approach R E C R E C

Mathew et al.
(HTR-free) [36]

46.5 — 15.9 55.5 — 17.5

Mathew et al.
(HTR-based) [36]

86.1 — 59.3 32.0 — 2.5

BIDAF-Line [67] 86.2 68.1 45.0 92.5 50.5 37.5
HTR-based 89.7 95.1 73.5 85.5 50.0 41.5
HTR-free 87.0 77.1 53.3 94.5 60.5 51.0

HTR-based (Ann.) 90.0 96.0 74.4 98.5 87.0 80.0

forms slightly better on both versions of IAM-DB and

the HTR-free approach on GW and sGMB. Compared

to an oracle approach with perfect text recognition as

input, the performance of our methods shows a huge de-

crease, especially on the IAM-DB benchmarks. When

compared to approaches from the literature, our meth-

ods show considerable improvements. Dessurt [16] still

performs well, probably due to the implicit encoding

of semantic knowledge extracted by the self-supervised

pre-training. The models proposed in [47, 62] have a

very similar NER architecture, but they do not inte-

grate external semantic knowledge. Instead, they train

the model end-to-end with randomly initialized weights.

This again highlights the benefits of our cross-modal

knowledge distillation approach.

6.7.3 Question Answering

Table 6 shows a comparison of our proposed QA ap-

proaches and methods from the literature on HWSQuAD

and BenthamQA. The results highlight the vulnerabil-

ity of models with explicit text recognition in presence

of low HTR performance. Here, HTR-based approaches

can only achieve low performance on BenthamQA, de-

spite the use of a state-of-the-art QA model. However,

at a reasonable recognition rate, the advantages of the

textual QA model become apparent and lead to al-

most perfect results on HWSQuAD. The oracle ap-

proach performs well on the retrieval and extraction

tasks independently, but the overall pipeline perfor-

mance is rather low at 75% on HWSQuAD. This is

likely due to the primary intent of the dataset, which

was to extract the response from a single document

rather than a collection of documents. This is supported

by the performance on BenthamQA, which was de-

Table 7: Comparison of direct and sequential word im-

age embedding approaches on several NER benchmarks

with the macro-F1 score. All models use the same HTR-

free NER architecture and embed the input word im-

ages into ELMo representations. HTR-free directly pre-

dicts the ELMo representation of a given word image

using a CNN. HTR-free (HTR) first transcribes the

word image with an HTR model and uses the extracted

text to obtain its ELMo embedding. HTR-free (Ann.)

acts as a baseline approach that uses the text annota-

tion of the word image for ELMo embedding.

Approach IAM
(6)

IAM
(18)

GW sGMB

HTR-free (Ann.) 85.7 63.4 84.5 81.1
HTR-free (HTR) 72.1 46.9 81.9 75.2
HTR-free 74.6 51.0 83.8 76.9

signed specifically for document collections and has a

more realistic relationship between performance on each

subtask and their combination. In [67], we use the same

modified BIDAF architecture as in our proposed HTR-

free approach, but instead of using a semantic repre-

sentation, we use PHOC for word image representa-

tion. There are clear advantages in integrating seman-

tic knowledge, especially for the answer extraction task

in both benchmarks. Compared to the HTR-free ap-

proach proposed in [36], large performance gains can

be achieved by our HTR-free method. In particular, the

HTR-free retrieval of relevant document images shows

high robustness. The performance of our HTR-based

approach is considerably higher compared to the method

proposed in [36]. This is likely due to the improved ro-

bustness of our HTR model, which is achieved by inte-

grating samples of IAM and GW during training.

7 Discussion

7.1 Direct vs. Sequential Word Image Embedding

In the following analysis, we demonstrate the advan-

tages of directly predicting a semantic embedding for

a word image instead of sequentially recognizing and

embedding it. Both approaches have the same condi-

tions and use the same NER architecture as described

in Section 4.2. Furthermore, they rely on a static ver-

sion of the ELMo embedding for semantic word image

representation. As shown in Table 7, a direct embed-

ding performs better on all NER benchmarks tested.

As a baseline approach, we evaluate a system under

perfect prediction of semantic ELMo embeddings. For

this purpose, the gold standard text annotations of the
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Figure 12: Assessing the robustness of the HTR-free

and HTR-based approaches. Results are shown for both

approaches on the IAM (6) NER benchmark as a func-

tion of CER. HTR and word embedding models are pre-

trained on different amounts of data from the IAM-DB,

resulting in varying CERs.

word images are used to generate semantic word em-

beddings. Finally, these embeddings serve as input for

the HTR-free NER model. Even if the performance of

the oracle is close to the performance of the direct and

sequential approaches on GW and sGMB, a large differ-

ence is observed on IAM-DB. Thereby, the text recog-

nition error rate for GW and sGMB is quite low with

about 3% CER compared to IAM-DB with 7% CER.

This again shows the strong influence of HTR errors on

the performance of NER tasks.

7.2 Robustness of HTR-free Approach

High robustness to handwriting variability is an estab-

lished expectation when using HTR-free models. To test

this assumption, we evaluate and compare the robust-

ness of our proposed frameworks. In this experiment,

we obtain the performance of both approaches on an

NER benchmark as a function of CER. We train HTR

and word image embedding models on different subsets

of the training data to achieve different recognition per-

formances. For the HTR-free approach, a lexicon-based

recognition is performed to compute CER. The lexi-

con consists of all training, validation and test words of

the given benchmark dataset. Based on these HTR and

embedding models, transcriptions and semantic word

image embeddings are calculated respectively. For the

HTR-based approach, the transcriptions are used as in-

put to the textual NER model, and the word embed-

dings are used as input to the HTR-free NER model.

Figure 12 shows their results on the IAM (6) NER

benchmark. The results demonstrate the fundamental

Table 8: Ablation study of our optimization strategies

for semantic word image embedding on NER bench-

marks. Results are given in macro F1.

Approach IAM
(6)

IAM
(18)

GW sGMB

Random 32.8 15.5 52.2 37.8
PHOC 60.3 36.5 72.8 71.2
FastText 53.6 32.3 68.2 66.9
ELMo 63.9 40.2 72.1 70.2
ELMo (+Synthetic) 74.6 51.0 83.8 76.9

disadvantage of sequential approaches, as HTR errors

propagate and lead to poor performance, especially at

high CER. The HTR-free model, on the other hand,

uses the multi-objective approach and is thus able to

achieve high performance for NER even when the initial

word embedding model has poor performance. While

the performance of the HTR-free approach drops con-

siderably in the beginning, the multi-objective tech-

nique is able to correct or at least cope with the incor-

rectly predicted word image embeddings for high CERs.

This is probably due to its end-to-end architecture and

optimization strategy.

7.3 Ablation Study

Considering the ambiguous correlation of semantic word

image embedding and task-specific results, the effects of

the most relevant optimization steps are evaluated in

an ablation study. Table 8 shows the effects of our pro-

posed optimization steps on NER benchmarks. Even if

the performance on these benchmarks varies consider-

ably, a general trend of optimization effects is observed.

Thereby, an appropriate word image representation can

almost double the performance on all benchmarks com-

pared to the standard random initialization technique.

The results also show that the predictive quality is

at least as important as the encoding of semantic in-

formation. Hereby, the syntactic PHOC representation

outperforms the semantic FastText embedding on all

benchmarks, even though PHOC encodes almost no se-

mantic information. The ELMo representation has both

high semantic quality and good predictive ability on

handwritten word images. Especially when pre-trained

on synthetic data, the ELMo representation achieves

the best results on all benchmarks. Overall, there is

a strong correlation between the semantic word image

embedding and task-specific metrics. However, the per-

formance of NER approaches cannot be determined by

a single metric, but requires a joint consideration of

QbS and WA scores.
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8 Conclusions

In this work, we present an HTR-free and an HTR-

based framework for semantic analysis of handwritten

document images. We evaluate the proposed approaches

on a variety of semantic benchmarks involving semantic

word spotting, named entity recognition, and question

answering. The HTR-based approach suffers from error

propagation, but outperforms HTR-free approaches on

most benchmarks. We identify the lack of pre-trained

semantic word embeddings as a major problem of HTR-

free approaches. We propose a cross-modal knowledge

distillation approach to efficiently integrate semantic

knowledge from textually pre-trained word embedding

models into the HTR-free framework, while avoiding ex-

plicit text recognition. This leads to a considerable per-

formance improvement over classical HTR-free models

and reduces the gap to state-of-the-art approaches. A

crucial issue in this integration process is the mapping

of handwritten word images into a textually pre-trained

semantic word embedding space. While our proposed

optimization methods have made great progress in this

mapping process, the task remains challenging.

The approaches proposed in this work require that

the input document images are segmented at word level.

In future work, we attempt to address this limitation

by extending our approaches to handle input images

at line or paragraph level. Furthermore, we will inves-

tigate the replacement of static word embeddings by

contextualized ones in our HTR-free framework.
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