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Abstract. The automatic extraction of key-value information from hand-
written documents is a key challenge in document analysis. A reliable
extraction is a prerequisite for the mass digitization efforts of many
archives. Large Vision Language Models (LVLM) are a promising tech-
nology to tackle this problem especially in scenarios where little anno-
tated training data is available. In this work, we present a novel dataset
specifically designed to evaluate the few-shot capabilities of LVLMs. The
CM1 documents are a historic collection of forms with handwritten en-
tries created in Europe to administer the Care and Maintenance pro-
gram after World War Two. The dataset establishes three benchmarks on
extracting name and birthdate information and, furthermore, considers
different training set sizes. We provide baseline results for two different
LVLMs and compare performances to an established full-page extraction
model. While the traditional full-page model achieves highly competi-
tive performances, our experiments show that when only a few training
samples are available the considered LVLMs benefit from their size and
heavy pretraining and outperform the classical approach. The dataset
and instructions are available under github.com/AvailableAfterReview.

1 Introduction

Over most parts of the 19th and 20th century, forms and register cards built
the backbone of many administrative processes. Machine printed forms with
handwritten entries were created in large quantities. Many archives preserved
huge document collections in physical form, leaving the contained information
largely inaccessible. The digitization of these collections is highly desirable. Be-
sides conservation, researchers from the humanities are highly interested in the
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information contained in the collections. Analyzing historic and social develop-
ments at scale based on quantitative methods allows for reliable insights. In order
to statistically analyze the information in a collection with potentially millions of
documents, automatic extraction methods are absolutely essential. Already the
first stage of digitizing a collection poses a tremendous problem for an archive.
Besides the physical process of scanning the documents, basic information has to
be captured to index the document. Personal information is especially valuable
not just for indexing but also for historians, social scientists and genealogists.
For historic documents, the reliable identification of birthdates is quintessential
as they often determine whether a document may be published.

Many approaches for information extraction rely on pipelines including multi-
ple steps such as preprocessing, layout analysis and text recognition. Using multi-
ple independent models makes the approach prone to error propagations and also
commonly relies on annotated training material for each of the stages [4,25]. Re-
cently, full-page information extraction models that allow for end-to-end learn-
ing, have become increasingly popular. Models such as DONUT [15], Dessurt [8],
Pix2Struct [17] or DAN [7] rely on attention mechanisms and generative text ap-
proaches such as BART [18], to extract information in a structured format. Given
enough representative and annotated training data, several works show high per-
formances when solving the extraction of key-value pairs from document images.
Recently, Large Language Models (LLMs) have emerged and showed incredible
capabilities for all kind of tasks. Large Vision Language Models (LVLMs) such
as ChatGPT4o, PaliGemma [22] or Qwen [27] essentially allow the generation of
a textual answer, given a prompt and an image. The task of extracting key-value
information to access and index large historic collections, can be easily formu-
lated as a prompt to a LVLM. Recent results show that the intensive training
process of LLMs makes them exceptionally well-suited for few-shot learning [5].

The amount of required training data is an essential consideration, as it has to
be created manually in a labor intensive process. On the other hand, LVLMs pose
a tremendous requirement in terms of computational resources. In this work, we
present a novel dataset that simulates the situation many archives are confronted
with. The CM1 documents are machine printed forms with handwritten entries
that have been created in the middle of the 20th century [3, 14, 23]. Only few
datasets exist that consider the extraction of specific key information from a full
document page, especially with respect to handwritten entries. This constitutes a
very challenging task as the model has to solve the layout problem as well as it has
to perform handwriting recognition. Besides establishing several benchmarks, we
investigate the training data requirements of a traditional full-page extraction
model and compare performances to two open weight LVLMs.

This work is organized as follows. Section 2 present the historic document
collection and defines the different benchmarks that we propose to evaluate the
few-shot performances of extraction models. Section 3 introduces the traditional
full-page extraction model and two open source LVLMs, which we consider in
the later experimental evaluation. Finally, Section 4 presents the performances
of the different models on the newly introduced benchmarks.
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2 CM1 Dataset

The documents of the CM1 dataset were created after World War Two. When
the Allies closed in on Nazi Germany in mid-1944, they anticipated encountering
hundreds of thousands of deported survivors of Nazi persecution [23]. This hu-
manitarian catastrophe prompted the emergence of a new category - ”displaced
persons” - to describe those uprooted by war and terror who would need assis-
tance far from their pre-war homes [14]. Approximately 65 million people were
forced to leave homes due to the war. Of these, around 11 million were classified
as displaced persons (DPs) in Europe, with 8 million located in Germany. Most
of these war victims were quickly repatriated after the end of hostilities. In 1947,
when responsibilities for the remaining DPs passed to the International Refugee
Organization (IRO), about 700.000 of them were still present in Western Eu-
rope. Today, roughly 350.000 of their case files still exist and are preserved by
the Arolsen Archives 1.

The CM1 (”Care and Maintenance”) files created by the IRO between 1947
and 1951 are among the most significant historical sources documenting this
displacement crisis and its management. These documents record complex nego-
tiations between institutions and individuals regarding status, mobility options,
and life chances in the aftermath of war. They contain data on the applicants re-
garding their personal information, educational background, employment history
prior to displacement, as well as information about relatives, places of residence,
vocational training, and language skills.

The CM1 files allow researchers to explore pathways of forced migration,
institutional decision-making patterns, and DP agency [3]. Through these doc-
uments, we can observe how categories like ”refugee” or ”displaced person” op-
erated in practice rather than merely as normative constructs. This perspective
aligns with the reflexive turn in migration studies, which questions the produc-
tion of categories as social practices. As archives digitize these materials, new
methodological approaches become possible. The combined use of qualitative
analysis and mass data extraction enables researchers to examine both indi-
vidual experiences and broader patterns, challenging conventional narratives of
forced migration and illuminating the multifaceted negotiation of its aftermath.
This requires not only primary digitization resulting in digital facsimiles, but
making these files machine-readable to open their data to systematic analysis.

2.1 Data Preparation

Scans of the CM1 documents are provided by the Arolsen Archives. The doc-
uments are organized by a distinct process identifier, which represents all doc-
uments related to the application for assistance. One application may include
multiple people filing for assistance. Nonetheless, every process has a defined
head of the family, which constitute the main person the documents are related
to. The main purpose of the provided dataset is the evaluation of models that

1 https://collections.arolsen-archives.org/en/archive/3-2-1

https://collections.arolsen-archives.org/en/archive/3-2-1
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{”79429549”: [
{”Name”: ”LUSTIGER”,
”Vorname”: ”ARNO”,
”Geb-Dat”: ”1924-05-07” },
{”Name”: ”LUSTIGER”,
”Vorname”: ”GITLA”,
”Geb-Dat”: ”1896-03-15”},
{”Name”: ”LUSTIGER”,
”Vorname”: ”HELA”,
”Geb-Dat”: ”1923-11-23”},
{”Name”: ”LUSTIGER”,
”Vorname”: ”ESTERA”,
”Geb-Dat”: ”1931-02-15”}]}

Fig. 1. CM1-COVER example image with corresponding JSON annotation.
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Fig. 2. Distribution over the number of people on the cover pages. The proposed
dataset only includes examples with four or less individuals.

allow the extraction of the main and associated persons, as well as their corre-
sponding dates of birth. This information has been manually annotated by the
archive and is publicly available. Every process consists of several documents,
including a cover page, the application form and further accompanying personal
documents. The documents are written in several different languages such as
English, German, French, Polish and others. The proposed benchmark only in-
cludes tasks related to the cover and the first page of the application.

The cover pages were not created at the same time as the application docu-
ments, as they serve organizational purposes of the archive. Every page follows
the exact same layout, see Figure 1, which provides information on the applicant
and up to three accompanying persons. Information on names, birthdates and
birth places, as well as some auxiliary information on the process are given. The
general form is machine printed, while all entries are handwritten. Formatting
and writing styles are very clear and the documents show close to no degrada-
tions. The entire collection includes 140114 individual processes. See Figure 2,
for the distribution of the number of individuals included in each process. Note,
that the form accounts only for up to four persons to be considered. If more than
four people were considered, the form was commonly continued on the back of
the page. As the dataset is designed for single full-page information extraction
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LastnameFirstname Date

Fig. 3. Example of different document pages, containing the birthdate, first and last-
name of the applicant.

tasks, we removed all cover pages referring to more than four persons, leaving a
total number of 135951 pages with 203112 individuals.

Beside the cover pages, which are comparably straight forward in terms of
layout and writing styles, the benchmark includes pages from the application
documents. We extracted the first page of the application documents after the
cover page. The resulting collection shows a high variance as the application pro-
cesses follow several different forms. Focusing on the first page of the documents
has the benefit that the name and the birthdate of the applicant are consistently
found on the document. Similar to the cover pages, the general forms are ma-
chine printed with handwritten entries. The different templates, as well as the
frequently occurring handwritten annotations, stamps and other additions result
in a comparably high variance compared to the cover pages.

In order to ensure a reliable foundation of documents for the benchmark, we
semi-automatically cleaned the collection of documents. Our goal was that all
documents follow one of a few templates. This scenario occurs often in many
archival digitization efforts, as many bureaucratic processes of recent history
relied on paper forms. Their exact template is often unknown or hard to reli-
ably define for a given collection. To represent this scenario and to ensure that
the target information is consistently contained in the document pages, we per-
formed the following curation process. A vector encoding that is representative
for the visual characteristics of a document is extracted by use of an autoencoder
(see Figure 4, left). Therefore, we first resize all document image to a resolution
of 512 by 512 pixels. The general autoencoder architecture follows the tradi-
tional encoder-decoder approach and is based on a ResNet50 [12]. The size of
the bottleneck, which also corresponds to the resulting size of the extracted em-
beddings, is 1024. We follow the standard approach and train the autoencoder
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Fig. 4. Left: Structure of the autoencoder that is used to generate characteristic visual
embeddings. Right: Examples of image reconstruction.

to reconstruct the resized document images using ADAM optimization [16] until
the applied mean squared error (MSE) loss converges. After training, the en-
coder is used to extract a feature representation of each image. Looking at the
reconstructed images (see Figure 4, right), it can be observed that most of the
details are lost. This especially corresponds to the handwritten entries, while the
general template persists. It can be assumed that this characteristic translates to
the extracted embeddings which encode rather template than detail information.

The resulting embeddings are, therefore, well suited to cluster the given doc-
uments with the goal to identify different document classes. Our aim was to
first generate more clusters than actual templates in the collection and later
remove clusters that contain mostly outliers or documents not fitting any of the
general templates. Based on the representation provided by the autoencoeder,
clustering is performed using kmeans with 50 being the number of clusters. After
clustering, each document cluster was manually inspected. Clusters where most
documents followed a common template that includes the name and the birthday
of the main applicant were kept. Overall, nine clusters were removed from the
document collection leaving 41 clusters with a total number of 105427 document
images. In general, the images have a comparable high resolution, while the area
of interest which holds the desired information like the name or date is rather
small. This can lead to problems when models are used that allow the extrac-
tion of an information without a designated layout analysis step. Those models
usually rely on resizing the input image to fixed size. A significant portion of
the dataset consists of document images of double pages. Clusters correspond-
ing to double page template were identified and the corresponding images were
cropped to the relevant single page. Therefore, the resulting benchmark only
includes single page images.
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Lastname: ALLENDORFER

Firstname: ANDREAS

Date: 1893-07-27

Fig. 5. Example of a common name template. First- and lastname are given separately.
The firstname of the main applicant occurs in a table among other family members.

2.2 Tasks

Based on the cleaned document collection and the corresponding annotations, we
propose two datasets and three different task for full-page information extraction.
Therefore, we introduce the three benchmarks CM1-COVER, CM1-NAME and
CM1-DATE.

CM1-COVER is based on the cover pages and constitutes the task of ex-
tracting the full list of people and their corresponding birthdates. The expected
output is a string following the JSON format holding all relevant information.
In order to extract the information, the designed model has to perform multiple
tasks such as segmentation and handwriting recognition making it a challenging
problem to learn in an end-to-end fashion.

CM1-NAME is based on the cropped and cleaned single-pages extracted from
the application documents. The goal is to extract the full name of the main
applicant. A main challenge in terms of document understanding is that for a
big of part of the collection the first and last name do not occur consecutively.
The family name is given in a header while all corresponding persons are listed
in a table later in the document. Therefore, extracting the full name of the
main person does not only mean the transcription of the name but also the
identification of the main person of the document. See Figure 5 for an example.

The third benchmark, CM1-DATE, aims at the extraction of the birthdate of
the main applicant. Again, only the first single page of the application is consid-
ered. This is an especially important task in many digitization and publication
efforts, as the birthdate of the considered people often determines if a document
may be published under data protection considerations. Most documents hold
several different dates which either correspond to the documentation process or
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Table 1. Number of samples per dataset split, including training subsets, validation,
and test sets.

Dataset
Train

Val Test Total

1% 10% 25% 100%

CM1-COVER 1209 12095 30237 120951 5000 10000 135951

CM1-NAME
904 9042 22606 90427 5000 10000 105427

CM1-DATE

other persons on the document. A significant challenge, therefore, is constituted
by identifying which date refers to the main applicant.

For all three benchmarks, we provide training splits, a validation set com-
prised of 5000 and a test set with 10000 samples. While in this academic context
a significant number of annotated training samples can be provided, this is often
not the case in an application scenario. Evaluating model performances with re-
spect to the availability of training data is an important consideration. Reducing
the amount of training data by training on a randomly drawn subset is a com-
mon practice, but works are often hard to reproduce and compare as the exact
subsets are not published. With few-shot learning being a main research area
to consider when solving the proposed extraction tasks, we propose and publish
well-defined subsets of the training data including only 1%, 10% or 25% of all
samples. See Table 1 for an overview of the number of samples in the different
dataset splits.

3 Full-Page Information Extraction

Traditional information extraction methodologies predominantly employ sequen-
tial document analysis pipelines, consisting of independent components such as
text detection, layout analysis, text recognition and semantic analysis (e.g. [26]).
While this modular approach allows for targeted optimization of individual com-
ponents, it also introduces the challenge of error propagation, where errors in
early stages of processing can negatively affect downstream tasks [4,25,26]. This
limitation is particularly significant when dealing with complex or historical doc-
uments, which often have heterogeneous layouts, handwritten annotations and
inconsistent structures [24].

End-to-end models for full-page information extraction have emerged as a
promising alternative to sequential pipelines [7, 8, 15, 17]. These models process
entire document images within a unified framework, integrating layout analy-
sis, text recognition and semantic analysis into a single approach. By taking a
holistic approach, end-to-end models effectively reduce error propagation and
enable consistent optimization across all processing stages [24]. Transformer-
based encoder-decoder architectures have demonstrated remarkable efficiency in
this domain, offering the ability to handle diverse document formats without
requiring explicit layout segmentation [15].
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Large Vision Language Models (LVLMs) combining robust visual encoders
with decoders based on LLMs have evolved, leading to excellent performance in
many domains [28]. These models are particularly beneficial in scenarios with
limited labeled training data, as they support few-shot and zero-shot learning
paradigms [5]. Recently, open-weight LVLMs were released that are comparable
to commercial solutions, designed with only about 3 billion parameters, facili-
tating training and deployment without the need for large GPU clusters [6].

This paper evaluates both traditional and modern end-to-end models for
our introduced CM1 benchmarks. The selected models include DONUT [15]
and two advanced LVLMs, PaliGemma3B [2] and Qwen2.5-VL [1], which offer
distinct architectural advantages and demonstrate suitability for environments
with limited computing resources.

3.1 DONUT

The Document Understanding Transformer (DONUT) is a Transformer-based
encoder-decoder model specifically optimized for full-page information extrac-
tion. The architecture of DONUT consists of a Swin Transformer [19] as the en-
coder and a BART (Bidirectional and Auto-Regressive Transformers) [18] model
as the decoder. The Swin Transformer employs a hierarchical feature extraction
approach using shifted windows, effectively capturing both local and global vi-
sual features from document images. This capability is critical for processing
high-resolution input and managing complex document layouts. The BART de-
coder uses an autoregressive text generation approach, enabling DONUT to
produce structured output, such as JSON-based key-value pairs, directly from
raw document images.

The pre-training strategy for DONUT involves large-scale text recognition
tasks using both real-world document images with pseudo-labeled OCR out-
put and synthetically generated document images. This dual pre-training ap-
proach enhances the generalization capabilities of the model across different
text styles and formats, including both printed and handwritten content. With
approximately 201 million parameters, DONUT represents a balanced compro-
mise between model performance and resource efficiency, allowing fine-tuning on
standard hardware without the need for large-scale computing infrastructure.

3.2 PaliGemma

PaliGemma3B is an open-weight LVLM that integrates the SigLIP-So400m vi-
sion encoder [29] with the Gemma-2B language model [22], resulting in a model
with approximately 3 billion parameters. The architecture uses a Vision Trans-
former (ViT) [11] encoder to process input images and extract high-dimensional
visual features, which are then linearly projected to match the input space of the
Gemma-2B language model. This integrated architecture facilitates the seamless
processing of multimodal input, allowing the model to effectively handle tasks
requiring both visual understanding and natural language generation.
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The pre-training of PaliGemma follows a multi-stage approach to cultivate
robust unimodal and multimodal competencies. First, the SigLIP-So400m vision
encoder and the Gemma-2B language model are independently pre-trained on
large unimodal datasets to improve the feature extraction and natural language
processing capabilities of the model, respectively. The model then undergoes
multimodal pre-training on a variety of image-text pairs, focusing on tasks such
as image captioning and visual question answering. This phase enables the model
to learn complex relationships between visual elements and textual descriptions,
which is critical for performance in integrated vision-language tasks.

PaliGemma supports a range of input image resolutions, with the highest
resolution of 896px used in this work to capture detailed visual information.
The model used has been pre-trained on the DocVQA dataset [21], providing it
with advanced capabilities for document-based visual question answering.

3.3 Qwen2.5-VL

Qwen2.5-VL is a state-of-the-art LVLM based on a fully Transformer-based ar-
chitecture that combines a ViT [11] with the Qwen2.5 LLM [27]. The encoder
uses a dynamic resolution ViT with window attention [9], which allows the model
to efficiently handle varying input image sizes and produces a variable number of
vision tokens. This dynamic image resolution allows Qwen2.5-VL to process im-
ages at their native resolution, which is particularly beneficial when interpreting
complex documents and extracting detailed visual information. The embedding
of the visual tokens is adapted to the input size of the LMM by cross-modal
attention [1].

The Qwen2.5 LLM is pre-trained on 18 trillion tokens, leading to high per-
formance on tasks requiring deep semantic understanding and high quality text
generation [27]. The model is designed for a wide range of multimodal tasks,
including object localisation, robust document understanding and video analy-
sis [1]. The model has been trained on diverse multimodal datasets, including
not only natural images and synthetic visual data, but also various structured
document images such as invoices, forms, tables and complex layouts. This com-
prehensive pre-training approach enables Qwen2.5-VL to state-of-the-art perfor-
mances on several document image analysis benchmarks [1].

3.4 Training (PEFT)

To adapt both LVLMs to the specific requirements of historical document un-
derstanding, we employ Parameter Efficient Fine-Tuning (PEFT) techniques,
particularly Low-Rank Adaptation (LoRA) [13] and Quantized LoRA (QLoRA)
[10]. LoRA has demonstrated a strong approximation to full fine-tuning of LLMs,
achieving comparable performance across various tasks while significantly reduc-
ing computational and memory demands [13]. By introducing low-rank matrices
into the training of LVLMs, LoRA allows for efficient fine-tuning by modifying
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only a subset of parameters. QLoRA further enhances this efficiency by apply-
ing quantization techniques that reduce the memory footprint through lower-
precision weight representations. These approaches substantially decrease com-
putational costs, enabling fine-tuning on single-GPU setups and broadening ac-
cess to high-performance LVLMs in resource-constrained environments [10, 13].
Our fine-tuning strategy targets both the encoder and decoder components of
the models, improving their ability to accurately interpret the high variability
of document images.

4 Experiments

To evaluate the performance of the proposed approaches from the previous sec-
tion for full-page information extraction, we conducted a series of experiments
using the CM1 dataset. Thereby, DONUT, PaliGemma, and Qwen2.5-VL were
trained and tested using the predefined training, validation, and test sets. Ad-
ditionally, to establish a baseline for general-purpose models, we performed a
zero-shot evaluation using ChatGPT-4o. Since ChatGPT-4o has presumably not
been fine-tuned on CM1 datasets, this evaluation serves as a reference point to
understand how a highly capable vision-language model performs without any
adaptation.

4.1 Training Setup

The training was conducted on a single NVIDIA A100 GPU with 80GB VRAM,
ensuring sufficient computational resources for fine-tuning large-scale models.
We employed the AdamW optimizer [20] with an initial learning rate of 1e−4 for
PaliGemma2 and Qwen2.5-VL3 while we use a rate of 3e−5 for DONUT4, follow-
ing a cosine annealing learning rate schedule to progressively reduce the learning
rate as training progressed. For our experiments, we utilized LoRA for LVLMs
with a rank of 8 and an alpha of 16 for all linear layers of the models, a con-
figuration that balances efficiency and adaptability. To further reduce memory
consumption, QLoRA was applied to Qwen2.5-VL, enabling quantized weight
updates, thereby making fine-tuning feasible on a single GPU. We adopted dif-
ferent batch size configurations, using a batch size of 1 with batch aggregation
of 4 for LVLMs and a batch size of 4 with batch aggregation of 4 for DONUT.
The image input for QwenVL was resized to a minimum of 256 and a maxi-
mum of 1280 pixels to accommodate high-resolution inputs during training. For
text generation tasks, the maximum token length was set to 32 for CM1-DATE
and CM1-NAME tasks and 512 for CM1-COVER. Additionally, we applied a
warmup phase of 10,000 iterations for DONUT to stabilize training. The maxi-
mum image input dimensions of DONUT were set to 2560 × 1920 pixels, with
a sequence length cap of 768.

2 PaliGemma: google/paligemma-3b-ft-docvqa-896
3 Qwen2.5-VL: Qwen/Qwen2.5-VL-3B-Instruct
4 DONUT: naver-clova-ix/donut-base
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4.2 Metrics

To assess the performance of the models on our proposed benchmarks, we use the
Character Error Rate (CER), accuracy and Tree Edit Distance (TED). Thereby,
the CER measures the edit distance at the character level between the extracted
and ground-truth text. A lower CER value indicates better text recognition per-
formance, with 0% CER meaning a perfect extraction. This metric is particularly
useful in evaluating OCR-based errors, where minor character-level mismatches
can accumulate, affecting the extracted text quality.

The accuracy evaluates the percentage of correctly extracted entities (e.g.,
full names, birthdates) that match the ground truth exactly. This metric is
particularly important for real-world applications where partial extraction cor-
rectness is insufficient.

The TED is inspired by [15] and used for assessing the quality on CM1-
COVER. This metric measures how well the extracted structured information
matches the expected format. To compute TED, the extracted output is first
converted into a tree representation, ensuring that the hierarchical structure
aligns with the ground truth. The edit distance between the two trees is then
computed, accounting for insertions, deletions, and modifications of nodes. To
make the score comparable across different documents, the computed tree dis-
tance is normalized by the size of the ground-truth tree. The final TED accuracy
score is derived using:

TEDacc = max

(
0, 1− d(T1, T2)

|T2|

)
(1)

where d(T1, T2) represents the distance between the predicted tree T1 and the
ground-truth tree T2, and |T2| is the size of the ground-truth tree.

Each of these metrics provides a different perspective on model performance.
Thereby, CER measures OCR quality, accuracy determines whether entire enti-
ties are correctly extracted and TED evaluates structured data alignment.

4.3 Results

The evaluation of full-page information extraction was conducted using the three
proposed benchmarks: cover page extraction (CM1-COVER), name extraction
(CM1-NAME ), and birthdate extraction (CM1-DATE ). Each task has the chal-
lenges of structured field identification and handling handwritten text. In the fol-
lowing, we analyze the results of our experiments and compare the performance
of DONUT, PaliGemma3B, and Qwen2.5-VL, as well as discuss the zero-shot
baseline performance of ChatGPT-4o.

Cover Page Extraction The CM1-COVER benchmark involves extracting
structured key-value pairs, specifically names and birthdates, from a predefined
document layout. Given this structured format, models can effectively leverage
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Table 2. Comparison on the CM1-COVER benchmark for different training data sizes.

Model
1% 10% 25% 100%

TED CER TED CER TED CER TED CER

Donut 25.6 53.5 88.2 8.9 90.4 6.9 92.4 6.9
PaliGemma 75.5 13.3 83.2 11.3 88.0 8.3 90.1 8.4
Qwen2.5-VL 58.8 15.9 87.0 9.1 89.3 8.1 89.8 7.8

TED (↑) and CER (downarrow) scores are multiplied by 100

Table 3. Comparison on the CM1-NAME benchmark for different training data sizes.

Model
1% 10% 25% 100%

Acc CER Acc CER Acc CER Acc CER

Donut 0.0 93.5 0.0 85.1 53.5 15.1 61.1 12.3
PaliGemma 26.5 27.3 40.3 18.7 47.0 15.7 54.3 13.3
Qwen2.5-VL 35.1 20.8 46.0 17.0 53.8 13.8 55.2 12.5

Acc (↑) and CER (↓) scores are multiplied by 100

layout information to enhance extraction accuracy. As given in Table 2, all mod-
els successfully learned to generate the required structured output within a few
iterations, demonstrating their ability to adapt quickly to the expected format.
However, performance varied depending on the amount of available training data.
DONUT initially struggled in low-data settings, exhibiting high CERs and low
TED accuracy when trained on only 1% of the dataset. However, with increased
training data, its performance improved rapidly, surpassing both PaliGemma3B
and Qwen2.5-VL at 10%, 25%, and 100% training data, ultimately achieving the
best overall results. In contrast, the LVLMs showed stronger few-shot capabilities
with 1% of the training data. However, as training data increased, the perfor-
mance gap between the models narrowed, with results becoming increasingly
comparable across all settings.

Name Extraction The CM1-NAME benchmark presents a more complex chal-
lenge, as the first and last names of individuals are often not located sequen-
tially within the document. This task requires the models to learn both the
visual structure and logical relationships between different text fields. Table 3
shows that DONUT struggles significantly in low-data settings, failing to ex-
tract names at 1% and 10% training data. However, with more training data,
its accuracy improved rapidly, outperforming Qwen2.5-VL and PaliGemma3B
at 100% training data. In contrast, Qwen2.5-VL demonstrated superior few-
shot performance, achieving the highest accuracy at 1% and 10% training data,
while PaliGemma3B also performed well in low-data scenarios. As training data
increased, performance differences between the models narrowed.
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Table 4. Comparison on the CM1-DATE benchmark for different training data sizes.

Model
1% 10% 25% 100%

Acc CER Acc CER Acc CER Acc CER

Donut 0.0 47.9 0.1 48.4 0.1 48.7 77.7 7.6
PaliGemma 24.3 22.1 53.0 12.2 59.2 10.5 66.5 9.0
Qwen2.5-VL 48.1 14.0 59.7 11.0 64.6 9.8 69.3 8.4

Acc (↑) and CER (↓) scores are multiplied by 100

Birthdate Extraction The CM1-DATE benchmark posed a significant chal-
lenge, as historical documents often contain multiple dates, making it difficult
for models to correctly identify the birthdate of the main applicant, as given
in Table 4. As in previous benchmarks, DONUT struggled in low-data settings,
achieving near-zero accuracy at 1%, 10%, and 25% training data, likely due to
overfitting, before improving sharply at 100% training data. Qwen2.5-VL signifi-
cantly outperformed PaliGemma3B at 1% training data, demonstrating superior
few-shot generalization. While this advantage persisted across training levels, the
gap narrowed, with DONUT being the best model with full training data.

Zero Shot Evaluation This experiment aims to evaluate whether a state-
of-the-art vision-language model could extract key information from historical
documents without prior training on CM1. ChatGPT-4o5 was tested in a zero-
shot setting using the official OpenAI API with the following prompts:

– CM1-COVER: Extract the first name, surname and date of birth of each
person from this image and return this information in JSON format. Exam-
ple: {’Person’: [{’firstname’: ’Doe’, ’lastname’: ’John’, ’Geb-Dat’: ’1913-01-
31’}, {’firstname’: ’Doe’, ’lastname’: ’Jane’, ’Geb-Dat’: ’1923-04-31’}]}

– CM1-NAME: Extract only the first and last name of the main person (head)
from this image and output only the name without any additional text.

– CM1-DATE: Extract only the date of birth of the main person (head) from
this image and output only the date of birth in the format yyyy-mm-dd
without any additional text.

The zero-shot evaluation in Table 5 highlights key differences in model capa-
bilities. DONUT shows limited success in handling structured document tasks
but fails at entity extraction, likely due to its pre-training focus. PaliGemma3B,
not optimized for these tasks, struggles to extract meaningful information. Qwen2.5-
VL, despite being a 3B parameter open-weight model, demonstrates strong doc-
ument understanding, producing well-structured outputs and handling entity
extraction. ChatGPT-4o, a significantly larger commercial model, performs best
overall but often returns fallback text instead of precise extractions. The com-
petitive performance of Qwen2.5-VL underscores the potential of smaller open-
weight models as viable alternatives to large-scale proprietary solutions.

5 Model-ID: gpt-4o-2024-08-06
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Table 5. Zero-shot performance on the CM1 benchmarks.

Model
CM1-COVER CM1-NAME CM1-DATE

TED CER Acc CER Acc CER

Donut 13.0 89.0 0.0 100.0 0.0 100.0
PaliGemma 0.0 98.2 0.0 96.4 0.0 77.9
Qwen2.5-VL 41.1 53.6 8.2 63.1 13.7 42.7
ChatGPT4o 58.8 22.6 22.9 79.9 26.3 28.1

TED (↑), Acc (↑) and CER (↓) scores are multiplied by 100

Discussion The results across all three benchmarks highlight key insights re-
garding pre-training, fine-tuning, and structured information extraction. Models
with large-scale pre-training, such as PaliGemma and Qwen2.5-VL, demonstrate
superior generalization capabilities in few-shot settings, consistently outperform-
ing DONUT when trained on limited data. This suggests that multimodal pre-
training plays a crucial role in learning robust feature representations. However,
full fine-tuning remains essential for optimal performance, as DONUT achieves
competitive results only when trained on the full dataset.

The zero-shot evaluation of GPT-4o demonstrates promising structural ex-
traction capabilities, correctly predicting about a quarter of names and birth-
dates without prior exposure to CM1. However, fallback responses and hand-
writing misinterpretations significantly impact CER, reinforcing the need for
fine-tuning to improve field association and handwriting robustness.

5 Conclusions

In this work, we present a novel dataset and benchmarks to evaluate end-to-end
information extraction from full-page documents. In our experiments, we com-
pare a traditional full-page extraction model to two open-weight LVLMs. The
results show that the traditional model, despite being of significantly smaller
size, outperforms the LVLMs when enough training data is available. Nonethe-
less, this scenario is unlikely in a practical application. When only few annotated
samples can be used for training, the LVLMs strongly benefit from their inten-
sive pretraining and offer a viable alternative. Furthermore, our results show
that despite being successful few-shot learners, zero-shot performances are still
inadequate for a historic collection containing handwriting. This is also the case
for a commercial model such as ChatGPT4o.
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